• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
    • News
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

Home / Proceedings / Proceedings of the AAAI Conference on Artificial Intelligence, 35 /

No. 8: AAAI-21 Technical Tracks 8

AAAI Technical Track on Machine Learning I

  • Deep Graph Spectral Evolution Networks for Graph Topological Evolution

    Negar Etemadyrad, Qingzhe Li, Liang Zhao

    7358-7366

    PDF
  • Adversarial Training and Provable Robustness: A Tale of Two Objectives

    Jiameng Fan, Wenchao Li

    7367-7376

    PDF
  • Learning a Gradient-free Riemannian Optimizer on Tangent Spaces

    Xiaomeng Fan, Zhi Gao, Yuwei Wu, Yunde Jia, Mehrtash Harandi

    7377-7384

    PDF
  • Learning to Reweight with Deep Interactions

    Yang Fan, Yingce Xia, Lijun Wu, Shufang Xie, Weiqing Liu, Jiang Bian, Tao Qin, Xiang-Yang Li

    7385-7393

    PDF
  • Deep Switching Auto-Regressive Factorization: Application to Time Series Forecasting

    Amirreza Farnoosh, Bahar Azari, Sarah Ostadabbas

    7394-7403

    PDF
  • UAG: Uncertainty-aware Attention Graph Neural Network for Defending Adversarial Attacks

    Boyuan Feng, Yuke Wang, Yufei Ding

    7404-7412

    PDF
  • SHOT-VAE: Semi-supervised Deep Generative Models With Label-aware ELBO Approximations

    Hao-Zhe Feng, Kezhi Kong, Minghao Chen, Tianye Zhang, Minfeng Zhu, Wei Chen

    7413-7421

    PDF
  • Learning to Augment for Data-scarce Domain BERT Knowledge Distillation

    Lingyun Feng, Minghui Qiu, Yaliang Li, Hai-Tao Zheng, Ying Shen

    7422-7430

    PDF
  • Collaborative Group Learning

    Shaoxiong Feng, Hongshen Chen, Xuancheng Ren, Zhuoye Ding, Kan Li, Xu Sun

    7431-7438

    PDF
  • Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression

    Christian Fiedler, Carsten W. Scherer, Sebastian Trimpe

    7439-7447

    PDF
  • Few-Shot One-Class Classification via Meta-Learning

    Ahmed Frikha, Denis Krompaß, Hans-Georg Köpken, Volker Tresp

    7448-7456

    PDF
  • Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning

    Haotian Fu, Hongyao Tang, Jianye Hao, Chen Chen, Xidong Feng, Dong Li, Wulong Liu

    7457-7465

    PDF
  • Agreement-Discrepancy-Selection: Active Learning with Progressive Distribution Alignment

    Mengying Fu, Tianning Yuan, Fang Wan, Songcen Xu, Qixiang Ye

    7466-7473

    PDF
  • Generalize a Small Pre-trained Model to Arbitrarily Large TSP Instances

    Zhang-Hua Fu, Kai-Bin Qiu, Hongyuan Zha

    7474-7482

    PDF
  • Generalized Adversarially Learned Inference

    Yatin Dandi, Homanga Bharadhwaj, Abhishek Kumar, Piyush Rai

    7185-7192

    PDF
  • Sample-Efficient L0-L2 Constrained Structure Learning of Sparse Ising Models

    Antoine Dedieu, Miguel Lázaro-Gredilla, Dileep George

    7193-7200

    PDF
  • Learning with Retrospection

    Xiang Deng, Zhongfei Zhang

    7201-7209

    PDF
  • Mercer Features for Efficient Combinatorial Bayesian Optimization

    Aryan Deshwal, Syrine Belakaria, Janardhan Rao Doppa

    7210-7218

    PDF
  • Differentially Private and Communication Efficient Collaborative Learning

    Jiahao Ding, Guannan Liang, Jinbo Bi, Miao Pan

    7219-7227

    PDF
  • Knowledge Refinery: Learning from Decoupled Label

    Qianggang Ding, Sifan Wu, Tao Dai, Hao Sun, Jiadong Guo, Zhang-Hua Fu, Shutao Xia

    7228-7235

    PDF
  • Semi-Supervised Learning with Variational Bayesian Inference and Maximum Uncertainty Regularization

    Kien Do, Truyen Tran, Svetha Venkatesh

    7236-7244

    PDF
  • Residual Shuffle-Exchange Networks for Fast Processing of Long Sequences

    Andis Draguns, Emīls Ozoliņš, Agris Šostaks, Matīss Apinis, Karlis Freivalds

    7245-7253

    PDF
  • A One-Size-Fits-All Solution to Conservative Bandit Problems

    Yihan Du, Siwei Wang, Longbo Huang

    7254-7261

    PDF
  • Combinatorial Pure Exploration with Full-Bandit or Partial Linear Feedback

    Yihan Du, Yuko Kuroki, Wei Chen

    7262-7270

    PDF
  • Knowledge Refactoring for Inductive Program Synthesis

    Sebastijan Dumancic, Tias Guns, Andrew Cropper

    7271-7278

    PDF
  • Semi-Supervised Metric Learning: A Deep Resurrection

    Ujjal Kr Dutta, Mehrtash Harandi, C Chandra Shekhar

    7279-7287

    PDF
  • Reinforcement Learning with Trajectory Feedback

    Yonathan Efroni, Nadav Merlis, Shie Mannor

    7288-7295

    PDF
  • The Parameterized Complexity of Clustering Incomplete Data

    Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, Stefan Szeider

    7296-7304

    PDF
  • Learning Prediction Intervals for Model Performance

    Benjamin Elder, Matthew Arnold, Anupama Murthi, Jiří Navrátil

    7305-7313

    PDF
  • Adaptive Gradient Methods for Constrained Convex Optimization and Variational Inequalities

    Alina Ene, Huy L. Nguyen, Adrian Vladu

    7314-7321

    PDF
  • Projection-Free Bandit Optimization with Privacy Guarantees

    Alina Ene, Huy L. Nguyen, Adrian Vladu

    7322-7330

    PDF
  • Learning to Cascade: Confidence Calibration for Improving the Accuracy and Computational Cost of Cascade Inference Systems

    Shohei Enomoro, Takeharu Eda

    7331-7339

    PDF
  • Regret Bounds for Batched Bandits

    Hossein Esfandiari, Amin Karbasi, Abbas Mehrabian, Vahab Mirrokni

    7340-7348

    PDF
  • Almost Linear Time Density Level Set Estimation via DBSCAN

    Hossein Esfandiari, Vahab Mirrokni, Peilin Zhong

    7349-7357

    PDF
  • Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning

    Chao Chen, Dongsheng Li, Junchi Yan, Hanchi Huang, Xiaokang Yang

    7011-7019

    PDF
  • Addressing Action Oscillations through Learning Policy Inertia

    Chen Chen, Hongyao Tang, Jianye Hao, Wulong Liu, Zhaopeng Meng

    7020-7027

    PDF
  • Cross-Layer Distillation with Semantic Calibration

    Defang Chen, Jian-Ping Mei, Yuan Zhang, Can Wang, Zhe Wang, Yan Feng, Chun Chen

    7028-7036

    PDF
  • Distributed Ranking with Communications: Approximation Analysis and Applications

    Hong Chen, Yingjie Wang, Yulong Wang, Feng Zheng

    7037-7045

    PDF
  • THOR, Trace-based Hardware-driven Layer-Oriented Natural Gradient Descent Computation

    Mengyun Chen, Kaixin Gao, Xiaolei Liu, Zidong Wang, Ningxi Ni, Qian Zhang, Lei Chen, Chao Ding, Zhenghai Huang, Min Wang, Shuangling Wang, Fan Yu, Xinyuan Zhao, Dachuan Xu

    7046-7054

    PDF
  • Neural Relational Inference with Efficient Message Passing Mechanisms

    Siyuan Chen, Jiahai Wang, Guoqing Li

    7055-7063

    PDF
  • Fitting the Search Space of Weight-sharing NAS with Graph Convolutional Networks

    Xin Chen, Lingxi Xie, Jun Wu, Longhui Wei, Yuhui Xu, Qi Tian

    7064-7072

    PDF
  • Deep Spiking Neural Network with Neural Oscillation and Spike-Phase Information

    Yi Chen, Hong Qu, Malu Zhang, Yuchen Wang

    7073-7080

    PDF
  • HyDRA: Hypergradient Data Relevance Analysis for Interpreting Deep Neural Networks

    Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, Chunyan Miao

    7081-7089

    PDF
  • NASGEM: Neural Architecture Search via Graph Embedding Method

    Hsin-Pai Cheng, Tunhou Zhang, Yixing Zhang, Shiyu Li, Feng Liang, Feng Yan, Meng Li, Vikas Chandra, Hai Li, Yiran Chen

    7090-7098

    PDF
  • Neighborhood Consensus Networks for Unsupervised Multi-view Outlier Detection

    Li Cheng, Yijie Wang, Xinwang Liu

    7099-7106

    PDF
  • Self-Progressing Robust Training

    Minhao Cheng, Pin-Yu Chen, Sijia Liu, Shiyu Chang, Cho-Jui Hsieh, Payel Das

    7107-7115

    PDF
  • Continuous-Time Attention for Sequential Learning

    Jen-Tzung Chien, Yi-Hsiang Chen

    7116-7124

    PDF
  • Transfer Learning for Efficient Iterative Safety Validation

    Anthony Corso, Mykel J. Kochenderfer

    7125-7132

    PDF
  • Computationally Tractable Riemannian Manifolds for Graph Embeddings

    Calin Cruceru, Gary Becigneul, Octavian-Eugen Ganea

    7133-7141

    PDF
  • Cost-aware Graph Generation: A Deep Bayesian Optimization Approach

    Jiaxu Cui, Bo Yang, Bingyi Sun, Jiming Liu

    7142-7150

    PDF
  • Type-augmented Relation Prediction in Knowledge Graphs

    Zijun Cui, Pavan Kapanipathi, Kartik Talamadupula, Tian Gao, Qiang Ji

    7151-7159

    PDF
  • The Value-Improvement Path: Towards Better Representations for Reinforcement Learning

    Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G. Bellemare, David Silver

    7160-7168

    PDF
  • Loop Estimator for Discounted Values in Markov Reward Processes

    Falcon Z. Dai, Matthew R. Walter

    7169-7175

    PDF
  • Differentially Private Stochastic Coordinate Descent

    Georgios Damaskinos, Celestine Mendler-Dünner, Rachid Guerraoui, Nikolaos Papandreou, Thomas Parnell

    7176-7184

    PDF
  • Improving Ensemble Robustness by Collaboratively Promoting and Demoting Adversarial Robustness

    Anh Tuan Bui, Trung Le, He Zhao, Paul Montague, Olivier deVel, Tamas Abraham, Dinh Phung

    6831-6839

    PDF
  • Cascade Size Distributions: Why They Matter and How to Compute Them Efficiently

    Rebekka Burkholz, John Quackenbush

    6840-6849

    PDF
  • Exploiting Diverse Characteristics and Adversarial Ambivalence for Domain Adaptive Segmentation

    Bowen Cai, Huan Fu, Rongfei Jia, Binqiang Zhao, Hua Li, Yinghui Xu

    6850-6858

    PDF
  • Time Series Domain Adaptation via Sparse Associative Structure Alignment

    Ruichu Cai, Jiawei Chen, Zijian Li, Wei Chen, Keli Zhang, Junjian Ye, Zhuozhang Li, Xiaoyan Yang, Zhenjie Zhang

    6859-6867

    PDF
  • A Blind Block Term Decomposition of High Order Tensors

    Yunfeng Cai, Ping Li

    6868-6876

    PDF
  • Open-Set Recognition with Gaussian Mixture Variational Autoencoders

    Alexander Cao, Yuan Luo, Diego Klabjan

    6877-6884

    PDF
  • Provably Secure Federated Learning against Malicious Clients

    Xiaoyu Cao, Jinyuan Jia, Neil Zhenqiang Gong

    6885-6893

    PDF
  • Dual Quaternion Knowledge Graph Embeddings

    Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, Qingming Huang

    6894-6902

    PDF
  • Counterfactual Explanations for Oblique Decision Trees:Exact, Efficient Algorithms

    Miguel Á. Carreira-Perpiñán, Suryabhan Singh Hada

    6903-6911

    PDF
  • Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

    Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez

    6912-6920

    PDF
  • Frivolous Units: Wider Networks Are Not Really That Wide

    Stephen Casper, Xavier Boix, Vanessa D'Amario, Ling Guo, Martin Schrimpf, Kasper Vinken, Gabriel Kreiman

    6921-6929

    PDF
  • Automated Clustering of High-dimensional Data with a Feature Weighted Mean Shift Algorithm

    Saptarshi Chakraborty, Debolina Paul, Swagatam Das

    6930-6938

    PDF
  • High-Confidence Off-Policy (or Counterfactual) Variance Estimation

    Yash Chandak, Shiv Shankar, Philip S. Thomas

    6939-6947

    PDF
  • A Multi-step-ahead Markov Conditional Forward Model with Cube Perturbations for Extreme Weather Forecasting

    Chia-Yuan Chang, Cheng-Wei Lu, Chuan-Ju Wang

    6948-6955

    PDF
  • Extending Multi-Sense Word Embedding to Phrases and Sentences for Unsupervised Semantic Applications

    Haw-Shiuan Chang, Amol Agrawal, Andrew McCallum

    6956-6965

    PDF
  • On Online Optimization: Dynamic Regret Analysis of Strongly Convex and Smooth Problems

    Ting-Jui Chang, Shahin Shahrampour

    6966-6973

    PDF
  • Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks

    Xiangyu Chang, Yingcong Li, Samet Oymak, Christos Thrampoulidis

    6974-6983

    PDF
  • Differentially Private Decomposable Submodular Maximization

    Anamay Chaturvedi, Huy Lê Nguyễn, Lydia Zakynthinou

    6984-6992

    PDF
  • Using Hindsight to Anchor Past Knowledge in Continual Learning

    Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip Torr, David Lopez-Paz

    6993-7001

    PDF
  • Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models

    Tong Che, Xiaofeng Liu, Site Li, Yubin Ge, Ruixiang Zhang, Caiming Xiong, Yoshua Bengio

    7002-7010

    PDF
  • An Enhanced Advising Model in Teacher-Student Framework using State Categorization

    Daksh Anand, Vaibhav Gupta, Praveen Paruchuri, Balaraman Ravindran

    6653-6660

    PDF
  • On Lipschitz Regularization of Convolutional Layers using Toeplitz Matrix Theory

    Alexandre Araujo, Benjamin Negrevergne, Yann Chevaleyre, Jamal Atif

    6661-6669

    PDF
  • The Tractability of SHAP-Score-Based Explanations for Classification over Deterministic and Decomposable Boolean Circuits

    Marcelo Arenas, Pablo Barceló, Leopoldo Bertossi, Mikaël Monet

    6670-6678

    PDF
  • TabNet: Attentive Interpretable Tabular Learning

    Sercan Ö. Arik, Tomas Pfister

    6679-6687

    PDF
  • Robust Model Compression Using Deep Hypotheses

    Omri Armstrong, Ran Gilad-Bachrach

    6688-6695

    PDF
  • Deep Radial-Basis Value Functions for Continuous Control

    Kavosh Asadi, Neev Parikh, Ronald E. Parr, George D. Konidaris, Michael L. Littman

    6696-6704

    PDF
  • DecAug: Out-of-Distribution Generalization via Decomposed Feature Representation and Semantic Augmentation

    Haoyue Bai, Rui Sun, Lanqing Hong, Fengwei Zhou, Nanyang Ye, Han-Jia Ye, S.-H. Gary Chan, Zhenguo Li

    6705-6713

    PDF
  • Correlative Channel-Aware Fusion for Multi-View Time Series Classification

    Yue Bai, Lichen Wang, Zhiqiang Tao, Sheng Li, Yun Fu

    6714-6722

    PDF
  • Deterministic Mini-batch Sequencing for Training Deep Neural Networks

    Subhankar Banerjee, Shayok Chakraborty

    6723-6731

    PDF
  • Relative Variational Intrinsic Control

    Kate Baumli, David Warde-Farley, Steven Hansen, Volodymyr Mnih

    6732-6740

    PDF
  • A Theory of Independent Mechanisms for Extrapolation in Generative Models

    Michel Besserve, Remy Sun, Dominik Janzing, Bernhard Schölkopf

    6741-6749

    PDF
  • ExGAN: Adversarial Generation of Extreme Samples

    Siddharth Bhatia, Arjit Jain, Bryan Hooi

    6750-6758

    PDF
  • Ordinal Historical Dependence in Graphical Event Models with Tree Representations

    Debarun Bhattacharjya, Tian Gao, Dharmashankar Subramanian

    6759-6767

    PDF
  • Characterizing the Loss Landscape in Non-Negative Matrix Factorization

    Johan Bjorck, Anmol Kabra, Kilian Q. Weinberger, Carla Gomes

    6768-6776

    PDF
  • Understanding Decoupled and Early Weight Decay

    Johan Bjorck, Kilian Q. Weinberger, Carla Gomes

    6777-6785

    PDF
  • Communication-Aware Collaborative Learning

    Avrim Blum, Shelby Heinecke, Lev Reyzin

    6786-6793

    PDF
  • Stochastic Precision Ensemble: Self-Knowledge Distillation for Quantized Deep Neural Networks

    Yoonho Boo, Sungho Shin, Jungwook Choi, Wonyong Sung

    6794-6802

    PDF
  • Fast Training of Provably Robust Neural Networks by SingleProp

    Akhilan Boopathy, Lily Weng, Sijia Liu, Pin-Yu Chen, Gaoyuan Zhang, Luca Daniel

    6803-6811

    PDF
  • Sample-Specific Output Constraints for Neural Networks

    Mathis Brosowsky, Florian Keck, Olaf Dünkel, Marius Zöllner

    6812-6821

    PDF
  • Fairness, Semi-Supervised Learning, and More: A General Framework for Clustering with Stochastic Pairwise Constraints

    Brian Brubach, Darshan Chakrabarti, John P. Dickerson, Aravind Srinivasan, Leonidas Tsepenekas

    6822-6830

    PDF
  • SWIFT: Scalable Wasserstein Factorization for Sparse Nonnegative Tensors

    Ardavan Afshar, Kejing Yin, Sherry Yan, Cheng Qian, Joyce Ho, Haesun Park, Jimeng Sun

    6548-6556

    PDF
  • DART: Adaptive Accept Reject Algorithm for Non-Linear Combinatorial Bandits

    Mridul Agarwal, Vaneet Aggarwal, Abhishek Kumar Umrawal, Chris Quinn

    6557-6565

    PDF
  • Improved Worst-Case Regret Bounds for Randomized Least-Squares Value Iteration

    Priyank Agrawal, Jinglin Chen, Nan Jiang

    6566-6573

    PDF
  • Semi-supervised Sequence Classification through Change Point Detection

    Nauman Ahad, Mark A. Davenport

    6574-6581

    PDF
  • Learning Invariant Representations using Inverse Contrastive Loss

    Aditya Kumar Akash, Vishnu Suresh Lokhande, Sathya N. Ravi, Vikas Singh

    6582-6591

    PDF
  • Learned Bi-Resolution Image Coding using Generalized Octave Convolutions

    Mohammad Akbari, Jie Liang, Jingning Han, Chengjie Tu

    6592-6599

    PDF
  • Deep Bayesian Quadrature Policy Optimization

    Ravi Tej Akella, Kamyar Azizzadenesheli, Mohammad Ghavamzadeh, Animashree Anandkumar, Yisong Yue

    6600-6608

    PDF
  • eTREE: Learning Tree-structured Embeddings

    Faisal M. Almutairi, Yunlong Wang, Dong Wang, Emily Zhao, Nicholas D. Sidiropoulos

    6609-6617

    PDF
  • Does Explainable Artificial Intelligence Improve Human Decision-Making?

    Yasmeen Alufaisan, Laura R. Marusich, Jonathan Z. Bakdash, Yan Zhou, Murat Kantarcioglu

    6618-6626

    PDF
  • Decentralized Multi-Agent Linear Bandits with Safety Constraints

    Sanae Amani, Christos Thrampoulidis

    6627-6635

    PDF
  • Computing an Efficient Exploration Basis for Learning with Univariate Polynomial Features

    Chaitanya Amballa, Manu K. Gupta, Sanjay P. Bhat

    6636-6643

    PDF
  • Noise Estimation Using Density Estimation for Self-Supervised Multimodal Learning

    Elad Amrani, Rami Ben-Ari, Daniel Rotman, Alex Bronstein

    6644-6652

    PDF

Primary Sidebar