• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
    • News
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

Home / Proceedings / Proceedings of the AAAI Conference on Artificial Intelligence, 35 / No. 8: AAAI-21 Technical Tracks 8

Time Series Domain Adaptation via Sparse Associative Structure Alignment

February 1, 2023

Download PDF

Authors

Ruichu Cai

Guangdong University of Technology


Jiawei Chen

Guangdong University of Technology


Zijian Li

Guangdong University of Technology


Wei Chen

Guangdong University of Technology


Keli Zhang

Huawei Noah’s Ark Lab


Junjian Ye

Huawei Noah's Ark Lab


Zhuozhang Li

Guangdong University of Technology


Xiaoyan Yang

Guangdong University of Technology


Zhenjie Zhang

Guangdong University of Technology


DOI:

10.1609/aaai.v35i8.16846


Abstract:

Domain adaptation on time series data is an important but challenging task. Most of the existing works in this area are based on the learning of the domain-invariant representation of the data with the help of restrictions like MMD. However, such extraction of the domain-invariant representation is a non-trivial task for time series data, due to the complex dependence among the timestamps. In detail, in the fully dependent time series, a small change of the time lags or the offsets may lead to difficulty in the domain invariant extraction. Fortunately, the stability of the causality inspired us to explore the domain invariant structure of the data. To reduce the difficulty in the discovery of causal structure, we relax it to the sparse associative structure and propose a novel sparse associative structure alignment model for domain adaptation. First, we generate the segment set to exclude the obstacle of offsets. Second, the intra-variables and inter-variables sparse attention mechanisms are devised to extract associative structure time-series data with considering time lags. Finally, the associative structure alignment is used to guide the transfer of knowledge from the source domain to the target one. Experimental studies not only verify the good performance of our methods on three real-world datasets but also provide some insightful discoveries on the transferred knowledge.

Topics: AAAI

Primary Sidebar

HOW TO CITE:

Ruichu Cai||Jiawei Chen||Zijian Li||Wei Chen||Keli Zhang||Junjian Ye||Zhuozhang Li||Xiaoyan Yang||Zhenjie Zhang Time Series Domain Adaptation via Sparse Associative Structure Alignment Proceedings of the AAAI Conference on Artificial Intelligence (2021) 6859-6867.

Ruichu Cai||Jiawei Chen||Zijian Li||Wei Chen||Keli Zhang||Junjian Ye||Zhuozhang Li||Xiaoyan Yang||Zhenjie Zhang Time Series Domain Adaptation via Sparse Associative Structure Alignment AAAI 2021, 6859-6867.

Ruichu Cai||Jiawei Chen||Zijian Li||Wei Chen||Keli Zhang||Junjian Ye||Zhuozhang Li||Xiaoyan Yang||Zhenjie Zhang (2021). Time Series Domain Adaptation via Sparse Associative Structure Alignment. Proceedings of the AAAI Conference on Artificial Intelligence, 6859-6867.

Ruichu Cai||Jiawei Chen||Zijian Li||Wei Chen||Keli Zhang||Junjian Ye||Zhuozhang Li||Xiaoyan Yang||Zhenjie Zhang. Time Series Domain Adaptation via Sparse Associative Structure Alignment. Proceedings of the AAAI Conference on Artificial Intelligence 2021 p.6859-6867.

Ruichu Cai||Jiawei Chen||Zijian Li||Wei Chen||Keli Zhang||Junjian Ye||Zhuozhang Li||Xiaoyan Yang||Zhenjie Zhang. 2021. Time Series Domain Adaptation via Sparse Associative Structure Alignment. "Proceedings of the AAAI Conference on Artificial Intelligence". 6859-6867.

Ruichu Cai||Jiawei Chen||Zijian Li||Wei Chen||Keli Zhang||Junjian Ye||Zhuozhang Li||Xiaoyan Yang||Zhenjie Zhang. (2021) "Time Series Domain Adaptation via Sparse Associative Structure Alignment", Proceedings of the AAAI Conference on Artificial Intelligence, p.6859-6867

Ruichu Cai||Jiawei Chen||Zijian Li||Wei Chen||Keli Zhang||Junjian Ye||Zhuozhang Li||Xiaoyan Yang||Zhenjie Zhang, "Time Series Domain Adaptation via Sparse Associative Structure Alignment", AAAI, p.6859-6867, 2021.

Ruichu Cai||Jiawei Chen||Zijian Li||Wei Chen||Keli Zhang||Junjian Ye||Zhuozhang Li||Xiaoyan Yang||Zhenjie Zhang. "Time Series Domain Adaptation via Sparse Associative Structure Alignment". Proceedings of the AAAI Conference on Artificial Intelligence, 2021, p.6859-6867.

Ruichu Cai||Jiawei Chen||Zijian Li||Wei Chen||Keli Zhang||Junjian Ye||Zhuozhang Li||Xiaoyan Yang||Zhenjie Zhang. "Time Series Domain Adaptation via Sparse Associative Structure Alignment". Proceedings of the AAAI Conference on Artificial Intelligence, (2021): 6859-6867.

Ruichu Cai||Jiawei Chen||Zijian Li||Wei Chen||Keli Zhang||Junjian Ye||Zhuozhang Li||Xiaoyan Yang||Zhenjie Zhang. Time Series Domain Adaptation via Sparse Associative Structure Alignment. AAAI[Internet]. 2021[cited 2023]; 6859-6867.


ISSN: 2374-3468


Published by AAAI Press, Palo Alto, California USA
Copyright 2022, Association for the Advancement of
Artificial Intelligence 1900 Embarcadero Road, Suite
101, Palo Alto, California 94303 All Rights Reserved

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT