Abstract:
The power output of photovoltaic systems (PVS) increases with the use of effective and efficient solar tracking techniques. However, current techniques suffer from several drawbacks in their tracking policy: (i) they usually do not consider the forecasted or prevailing weather conditions; even when they do, they (ii) rely on complex closed-loop controllers and sophisticated instruments; and (iii) typically, they do not take the energy consumption of the trackers into account. In this paper, we propose a policy iteration method (along with specialized variants), which is able to calculate near-optimal trajectories for effective and efficient day-ahead solar tracking, based on weather forecasts coming from on-line providers. To account for the energy needs of the tracking system, the technique employs a novel and generic consumption model. Our simulations show that the proposed methods can increase the power output of a PVS considerably, when compared to standard solar tracking techniques.
DOI:
10.1609/aaai.v29i1.9244