• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
    • News
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

Home / Proceedings / Proceedings of the AAAI Conference on Artificial Intelligence, 29 / No.1: The Twenty-Ninth Conference on Artificial Intelligence

FutureMatch: Combining Human Value Judgments and Machine Learning to Match in Dynamic Environments

March 8, 2023

Download PDF

Authors

John Dickerson

Carnegie Mellon University


Tuomas Sandholm

Carnegie Mellon University


DOI:

10.1609/aaai.v29i1.9239


Abstract:

The preferred treatment for kidney failure is a transplant; however, demand for donor kidneys far outstrips supply. Kidney exchange, an innovation where willing but incompatible patient-donor pairs can exchange organs- — via barter cycles and altruist-initiated chains —provides a life-saving alternative.Typically, fielded exchanges act myopically, considering only the current pool of pairs when planning the cycles and chains. Yet kidney exchange is inherently dynamic, with participants arriving and departing. Also, many planned exchange transplants do not go to surgery due to various failures. So, it is important to consider the future when matching. Motivated by our experience running the computational side of a large nationwide kidney exchange, we present FutureMatch, a framework for learning to match in a general dynamic model. FutureMatch takes as input a high-level objective (e.g., "maximize graft survival of transplants over time'') decided on by experts, then automatically (i) learns based on data how to make this objective concrete and (ii) learns the ``means'' to accomplish this goal — a task, in our experience, that humans handle poorly. It uses data from all live kidney transplants in the US since 1987 to learn the quality of each possible match; it then learns the potentials of elements of the current input graph offline (e.g., potentials of pairs based on features such as donor and patient blood types), translates these to weights, and performs a computationally feasible batch matching that incorporates dynamic, failure-aware considerations through the weights. We validate FutureMatch on real fielded exchange data. It results in higher values of the objective. Furthermore, even under economically inefficient objectives that enforce equity, it yields better solutions for the efficient objective (which does not incorporate equity) than traditional myopic matching that uses the efficiency objective.

Topics: AAAI

Primary Sidebar

HOW TO CITE:

John Dickerson|| Tuomas Sandholm FutureMatch: Combining Human Value Judgments and Machine Learning to Match in Dynamic Environments Proceedings of the AAAI Conference on Artificial Intelligence, 29 (2015) .

John Dickerson|| Tuomas Sandholm FutureMatch: Combining Human Value Judgments and Machine Learning to Match in Dynamic Environments AAAI 2015, .

John Dickerson|| Tuomas Sandholm (2015). FutureMatch: Combining Human Value Judgments and Machine Learning to Match in Dynamic Environments. Proceedings of the AAAI Conference on Artificial Intelligence, 29, .

John Dickerson|| Tuomas Sandholm. FutureMatch: Combining Human Value Judgments and Machine Learning to Match in Dynamic Environments. Proceedings of the AAAI Conference on Artificial Intelligence, 29 2015 p..

John Dickerson|| Tuomas Sandholm. 2015. FutureMatch: Combining Human Value Judgments and Machine Learning to Match in Dynamic Environments. "Proceedings of the AAAI Conference on Artificial Intelligence, 29". .

John Dickerson|| Tuomas Sandholm. (2015) "FutureMatch: Combining Human Value Judgments and Machine Learning to Match in Dynamic Environments", Proceedings of the AAAI Conference on Artificial Intelligence, 29, p.

John Dickerson|| Tuomas Sandholm, "FutureMatch: Combining Human Value Judgments and Machine Learning to Match in Dynamic Environments", AAAI, p., 2015.

John Dickerson|| Tuomas Sandholm. "FutureMatch: Combining Human Value Judgments and Machine Learning to Match in Dynamic Environments". Proceedings of the AAAI Conference on Artificial Intelligence, 29, 2015, p..

John Dickerson|| Tuomas Sandholm. "FutureMatch: Combining Human Value Judgments and Machine Learning to Match in Dynamic Environments". Proceedings of the AAAI Conference on Artificial Intelligence, 29, (2015): .

John Dickerson|| Tuomas Sandholm. FutureMatch: Combining Human Value Judgments and Machine Learning to Match in Dynamic Environments. AAAI[Internet]. 2015[cited 2023]; .


ISSN: 2374-3468


Published by AAAI Press, Palo Alto, California USA
Copyright 2022, Association for the Advancement of
Artificial Intelligence 1900 Embarcadero Road, Suite
101, Palo Alto, California 94303 All Rights Reserved

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT