Proceedings:
No. 8: AAAI-21 Technical Tracks 8
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Technical Track on Machine Learning I
Downloads:
Abstract:
Humans constantly restructure knowledge to use it more efficiently. Our goal is to give a machine learning system similar abilities so that it can learn more efficiently. We introduce the knowledge refactoring problem, where the goal is to restructure a learner's knowledge base to reduce its size and to minimise redundancy in it. We focus on inductive logic programming, where the knowledge base is a logic program. We introduce Knorf, a system which solves the refactoring problem using constraint optimisation. A key feature of Knorf is that, rather than simply removing knowledge, it also introduces new knowledge through predicate invention. We evaluate our approach on two domains: building Lego structures and real-world string transformations. Our experiments show that learning from refactored knowledge can improve predictive accuracies fourfold and reduce learning times by half.
DOI:
10.1609/aaai.v35i8.16893
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35