Proceedings:
No. 8: AAAI-21 Technical Tracks 8
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Technical Track on Machine Learning I
Downloads:
Abstract:
Cascade models are central to understanding, predicting, and controlling epidemic spreading and information propagation. Related optimization, including influence maximization, model parameter inference, or the development of vaccination strategies, relies heavily on sampling from a model. This is either inefficient or inaccurate. As alternative, we present an efficient message passing algorithm that computes the probability distribution of the cascade size for the Independent Cascade Model on weighted directed networks and generalizations. Our approach is exact on trees but can be applied to any network topology. It approximates locally tree-like networks well, scales to large networks, and can lead to surprisingly good performance on more dense networks, as we also exemplify on real world data.
DOI:
10.1609/aaai.v35i8.16844
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35