Proceedings:
No. 4: AAAI-21 Technical Tracks 4
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Technical Track on Computer Vision III
Downloads:
Abstract:
Unsupervised person re-identification (re-ID) is becoming increasingly popular due to its power in real-world systems such as public security and intelligent transportation systems. However, the person re-ID task is challenged by the problems of data distribution discrepancy across cameras and lack of label information. In this paper, we propose a coarse-to-fine heterogeneous graph alignment (HGA) method to find cross-camera person matches by characterizing the unlabeled data as a heterogeneous graph for each camera. In the coarse-alignment stage, we assign a projection for each camera and utilize an adversarial learning based method to align coarse-grained node groups from different cameras into a shared space, which consequently alleviates the distribution discrepancy between cameras. In the fine-alignment stage, we exploit potential fine-grained node groups in the shared space and introduce conservative alignment loss functions to constrain the graph aligning process, resulting in reliable pseudo labels as learning guidance. The proposed domain adaptation framework not only improves model generalization on target domain, but also facilitates mining and integrating the potential discriminative information across different cameras. Extensive experiments on benchmark datasets demonstrate that the proposed approach outperforms the state-of-the-arts.
DOI:
10.1609/aaai.v35i4.16448
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35