• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • News
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
    • Contribute
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

  • Twitter
  • Facebook
  • LinkedIn
Home > Proceedings / Proceedings of the International Conference on Automated Planning and Scheduling, 25 > Book One

Policy Evaluation with Temporal Differences: A Survey and Comparison (Extended Abstract)

February 1, 2023

Authors

Christoph Dann,Gerhard Neumann,Jan Peters

Carnegie Mellon University,Technische Universität Darmstadt,MaxPlanck Institute for Intelligent Systems


Proceedings:

Book One

Volume

Issue:

Proceedings of the International Conference on Automated Planning and Scheduling, 25

Track:

Journal Presentations

Downloads:

Download PDF

Abstract:

Value functions are an essential tool for solving sequential decision making problems such as Markov decision processes (MDPs). Computing the value function for a given policy (policy evaluation) is not only important for determining the quality of the policy but also a key step in prominent policy-iteration-type algorithms. In common settings where a model of the Markov decision process is not available or too complex to handle directly, an approximation of the value function is usually estimated from samples of the process. Linearly parameterized estimates are often preferred due to their simplicity and strong stability guarantees. Since the late 1980s, research on policy evaluation in these scenarios has been dominated by temporal-difference (TD) methods because of their data-efficiency. However, several core issues have only been tackled recently, including stability guarantees for off-policy estimation where the samples are not generated by the policy to evaluate. Together with improving sample efficiency and probabilistic treatment of uncertainty in the value estimates, these efforts have lead to numerous new temporal-difference algorithms. These methods are scattered over the literature and usually only compared to most similar approaches. The article therefore aims at presenting the state of the art of policy evaluation with temporal differences and linearly parameterized value functions in discounted MDPs as well as a more comprehensive comparison of these approaches.We put the algorithms in a unified framework of function optimization, with focus on surrogate cost functions and optimization strategies, to identify similarities and differences between the methods. In addition, important extensions of the base methods such as off-policy estimation and eligibility traces for better bias-variance trade-off, as well as regularization in high dimensional feature spaces, are discussed.

DOI:

10.1609/icaps.v25i1.13686


ICAPS

Proceedings of the International Conference on Automated Planning and Scheduling, 25



Topics: ICAPS

Primary Sidebar

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT