Proceedings:
Book One
Volume
Issue:
Proceedings of the International Conference on Automated Planning and Scheduling, 31
Track:
Main Track
Downloads:
Abstract:
Path planners are important components of various products from video games to robotics, but their output can be counter-intuitive due to problem complexity. As a step towards improving the understanding of path plans by various users, here we propose methods that generate explanations for the optimality of paths. Given the question "why is path A optimal, rather than B which I expected?", our methods generate an explanation based on the changes to the graph that make B the optimal path. We focus on the case of path planning on navigation meshes, which are heavily used in the computer game industry and robotics. We propose two methods - one based on a single inverse-shortest-paths optimization problem, the other incrementally solving complex optimization problems. We show that these methods offer computation time improvements of up to 3 orders of magnitude relative to domain-independent search-based methods, as well as scaling better with the length of explanations. Finally, we show through a user study that, when compared to baseline cost-based explanations, our explanations are more satisfactory and effective at increasing users' understanding of problems.
DOI:
10.1609/icaps.v31i1.15947
ICAPS
Proceedings of the International Conference on Automated Planning and Scheduling, 31