Proceedings:
Book One
Volume
Issue:
Proceedings of the International Conference on Automated Planning and Scheduling, 27
Track:
Planning and Learning Track
Downloads:
Abstract:
This paper describes an architecture for an agent to learn and reason about affordances. In this architecture, Answer Set Prolog, a declarative language, is used to represent and reason with incomplete domain knowledge that includes a representation of affordances as relations defined jointly over objects and actions. Reinforcement learning and decision-tree induction based on this relational representation and observations of action outcomes are used to interactively and cumulatively (a) acquire knowledge of affordances of specific objects being operated upon by specific agents; and (b) generalize from these specific learned instances. The capabilities of this architecture are illustrated and evaluated in two simulated domains, a variant of the classic Blocks World domain, and a robot assisting humans in an office environment.
DOI:
10.1609/icaps.v27i1.13852
ICAPS
Proceedings of the International Conference on Automated Planning and Scheduling, 27