AAAI Publications, Fourth AAAI Conference on Human Computation and Crowdsourcing

Font Size: 
Crowdclass: Designing Classification-Based Citizen Science Learning Modules
Doris Jung-Lin Lee, Joanne Lo, Moonhyok Kim, Eric Paulos

Last modified: 2016-09-21

Abstract


In this paper, we introduce Crowdclass, a novel framework that integrates the learning of advanced scientific concepts with the crowdsourcing microtask of image classification. In Crowdclass, we design questions to serve as both a learning experience and a scientific classification. This is different from conventional citizen science platforms which decompose high level questions into a series of simple microtasks that require no scientific background knowledge to complete. We facilitate learning within the microtask by providing content that is appropriate for the participant’s level of knowledge through scaffolding learning. We conduct a between-group study of 93 participants on Amazon Mechanical Turk comparing Crowdclass to the popular citizen science project Galaxy Zoo. We find that the scaffolding presentation of content enables learning of more challenging concepts. By understanding the relationship between user motivation, learning, and performance, we draw general design principles for learning-as-an-incentive interventions applicable to other crowdsourcing applications.

Keywords


citizen science, learning, crowdsourcing

Full Text: PDF