Autonomous Classification of Knowledge into an Ontology

Matthew E. Taylor, Cynthia Matuszek, Bryan Klimt, Michael Witbrock.

Ontologies are an increasingly important tool in knowledge representation, as they allow large amounts of data to be related in a logical fashion. Current research is concentrated on automatically constructing ontologies, merging ontologies with different structures, and optimal mechanisms for ontology building; in this work we consider the related, but distinct, problem of how to automatically determine where to place new knowledge into an existing ontology. Rather than relying on human knowledge engineers to carefully classify knowledge, it is becoming increasingly important for machine learning techniques to automate such a task. Automation is particularly important as the rate of ontology building via automatic knowledge acquisition techniques increases. This paper compares three well-established machine learning techniques and shows that they can be applied successfully to this knowledge placement task. Our methods are fully implemented and tested in the Cyc knowledge base system.

Subjects: 11. Knowledge Representation; 12. Machine Learning and Discovery

Submitted: Feb 11, 2007

This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.