Potential-based Shaping in Model-based Reinforcement Learning

John Asmuth, Michael L. Littman, Robert Zinkov

Potential-based shaping was designed as a way of introducing background knowledge into model-free reinforcement-learning algorithms. By identifying states that are likely to have high value, this approach can decrease experience complexity—the number of trials needed to find near-optimal behavior. An orthogonal way of decreasing experience complexity is to use a model-based learning approach, building and exploiting an explicit transition model. In this paper, we show how potential-based shaping can be redefined to work in the model-based setting to produce an algorithm that shares the benefits of both ideas.

Subjects: 12.1 Reinforcement Learning; Please choose a second document classification

Submitted: Apr 11, 2008

This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.