Proceedings:
No. 8: AAAI-21 Technical Tracks 8
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Technical Track on Machine Learning I
Downloads:
Abstract:
Many sequential decision-making systems leverage data collected using prior policies to propose a new policy. For critical applications, it is important that high-confidence guarantees on the new policy’s behavior are provided before deployment, to ensure that the policy will behave as desired. Prior works have studied high-confidence off-policy estimation of the expected return, however, high-confidence off-policy estimation of the variance of returns can be equally critical for high-risk applications. In this paper we tackle the previously open problem of estimating and bounding, with high confidence, the variance of returns from off-policy data.
DOI:
10.1609/aaai.v35i8.16855
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35