Proceedings:
No. 8: AAAI-21 Technical Tracks 8
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Technical Track on Machine Learning I
Downloads:
Abstract:
This paper studies regret minimization with randomized value functions in reinforcement learning. In tabular finite-horizon Markov Decision Processes, we introduce a clipping variant of one classical Thompson Sampling (TS)-like algorithm, randomized least-squares value iteration (RLSVI). Our $tilde{mathrm{O}}(H^2Ssqrt{AT})$ high-probability worst-case regret bound improves the previous sharpest worst-case regret bounds for RLSVI and matches the existing state-of-the-art worst-case TS-based regret bounds.
DOI:
10.1609/aaai.v35i8.16813
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35