Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 05: AAAI-20 Technical Tracks 5
Track:
AAAI Technical Track: Natural Language Processing
Downloads:
Abstract:
Common grounding is the process of creating, repairing and updating mutual understandings, which is a fundamental aspect of natural language conversation. However, interpreting the process of common grounding is a challenging task, especially under continuous and partially-observable context where complex ambiguity, uncertainty, partial understandings and misunderstandings are introduced. Interpretation becomes even more challenging when we deal with dialogue systems which still have limited capability of natural language understanding and generation. To address this problem, we consider reference resolution as the central subtask of common grounding and propose a new resource to study its intermediate process. Based on a simple and general annotation schema, we collected a total of 40,172 referring expressions in 5,191 dialogues curated from an existing corpus, along with multiple judgements of referent interpretations. We show that our annotation is highly reliable, captures the complexity of common grounding through a natural degree of reasonable disagreements, and allows for more detailed and quantitative analyses of common grounding strategies. Finally, we demonstrate the advantages of our annotation for interpreting, analyzing and improving common grounding in baseline dialogue systems.
DOI:
10.1609/aaai.v34i05.6442
AAAI
Vol. 34 No. 05: AAAI-20 Technical Tracks 5
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved