• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
    • News
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

Home / Proceedings / Proceedings of the AAAI Conference on Artificial Intelligence, 36 /

No. 6: AAAI-22 Technical Tracks 6

AAAI Technical Track on Machine Learning I

  • Adaptive Kernel Graph Neural Network

    Mingxuan Ju, Shifu Hou, Yujie Fan, Jianan Zhao, Yanfang Ye, Liang Zhao

    7051-7058

    PDF
  • Fully Spiking Variational Autoencoder

    Hiromichi Kamata, Yusuke Mukuta, Tatsuya Harada

    7059-7067

    PDF
  • Not All Parameters Should Be Treated Equally: Deep Safe Semi-supervised Learning under Class Distribution Mismatch

    Rundong He, Zhongyi Han, Yang Yang, Yilong Yin

    6874-6883

    PDF
  • Wasserstein Unsupervised Reinforcement Learning

    Shuncheng He, Yuhang Jiang, Hongchang Zhang, Jianzhun Shao, Xiangyang Ji

    6884-6892

    PDF
  • Multi-Mode Tensor Space Clustering Based on Low-Tensor-Rank Representation

    Yicong He, George K. Atia

    6893-6901

    PDF
  • Toward Physically Realizable Quantum Neural Networks

    Mohsen Heidari, Ananth Grama, Wojciech Szpankowski

    6902-6909

    PDF
  • Reinforcement Learning of Causal Variables Using Mediation Analysis

    Tue Herlau, Rasmus Larsen

    6910-6917

    PDF
  • Anytime Guarantees under Heavy-Tailed Data

    Matthew J. Holland

    6918-6925

    PDF
  • Adversarial Examples Can Be Effective Data Augmentation for Unsupervised Machine Learning

    Chia-Yi Hsu, Pin-Yu Chen, Songtao Lu, Sijia Liu, Chia-Mu Yu

    6926-6934

    PDF
  • Towards Automating Model Explanations with Certified Robustness Guarantees

    Mengdi Huai, Jinduo Liu, Chenglin Miao, Liuyi Yao, Aidong Zhang

    6935-6943

    PDF
  • Multi-View Clustering on Topological Manifold

    Shudong Huang, Ivor Tsang, Zenglin Xu, Jiancheng Lv, Quan-Hui Liu

    6944-6951

    PDF
  • Achieving Counterfactual Fairness for Causal Bandit

    Wen Huang, Lu Zhang, Xintao Wu

    6952-6959

    PDF
  • Uncertainty-Aware Learning against Label Noise on Imbalanced Datasets

    Yingsong Huang, Bing Bai, Shengwei Zhao, Kun Bai, Fei Wang

    6960-6969

    PDF
  • Globally Optimal Hierarchical Reinforcement Learning for Linearly-Solvable Markov Decision Processes

    Guillermo Infante, Anders Jonsson, Vicenç Gómez

    6970-6977

    PDF
  • Causal Discovery in Hawkes Processes by Minimum Description Length

    Amirkasra Jalaldoust, Kateřina Hlaváčková-Schindler, Claudia Plant

    6978-6987

    PDF
  • Group-Aware Threshold Adaptation for Fair Classification

    Taeuk Jang, Pengyi Shi, Xiaoqian Wang

    6988-6995

    PDF
  • Towards Discriminant Analysis Classifiers Using Online Active Learning via Myoelectric Interfaces

    Andres G Jaramillo-Yanez, Marco E. Benalcázar, Sebastian Sardina, Fabio Zambetta

    6996-7004

    PDF
  • Label Hallucination for Few-Shot Classification

    Yiren Jian, Lorenzo Torresani

    7005-7014

    PDF
  • Learning Expected Emphatic Traces for Deep RL

    Ray Jiang, Shangtong Zhang, Veronica Chelu, Adam White, Hado van Hasselt

    7015-7023

    PDF
  • Delving into Sample Loss Curve to Embrace Noisy and Imbalanced Data

    Shenwang Jiang, Jianan Li, Ying Wang, Bo Huang, Zhang Zhang, Tingfa Xu

    7024-7032

    PDF
  • Fast Graph Neural Tangent Kernel via Kronecker Sketching

    Shunhua Jiang, Yunze Man, Zhao Song, Zheng Yu, Danyang Zhuo

    7033-7041

    PDF
  • Creativity of AI: Automatic Symbolic Option Discovery for Facilitating Deep Reinforcement Learning

    Mu Jin, Zhihao Ma, Kebing Jin, Hankz Hankui Zhuo, Chen Chen, Chao Yu

    7042-7050

    PDF
  • Recovering the Propensity Score from Biased Positive Unlabeled Data

    Walter Gerych, Thomas Hartvigsen, Luke Buquicchio, Emmanuel Agu, Elke Rundensteiner

    6694-6702

    PDF
  • DiPS: Differentiable Policy for Sketching in Recommender Systems

    Aritra Ghosh, Saayan Mitra, Andrew Lan

    6703-6712

    PDF
  • Learning Large DAGs by Combining Continuous Optimization and Feedback Arc Set Heuristics

    Pierre Gillot, Pekka Parviainen

    6713-6720

    PDF
  • Regularized Modal Regression on Markov-Dependent Observations: A Theoretical Assessment

    Tieliang Gong, Yuxin Dong, Hong Chen, Wei Feng, Bo Dong, Chen Li

    6721-6728

    PDF
  • Partial Multi-Label Learning via Large Margin Nearest Neighbour Embeddings

    Xiuwen Gong, Dong Yuan, Wei Bao

    6729-6736

    PDF
  • LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks

    Adam Goodge, Bryan Hooi, See-Kiong Ng, Wee Siong Ng

    6737-6745

    PDF
  • Semi-supervised Conditional Density Estimation with Wasserstein Laplacian Regularisation

    Olivier Graffeuille, Yun Sing Koh, Jörg Wicker, Moritz K Lehmann

    6746-6754

    PDF
  • GoTube: Scalable Statistical Verification of Continuous-Depth Models

    Sophie A. Gruenbacher, Mathias Lechner, Ramin Hasani, Daniela Rus, Thomas A. Henzinger, Scott A. Smolka, Radu Grosu

    6755-6764

    PDF
  • Balanced Self-Paced Learning for AUC Maximization

    Bin Gu, Chenkang Zhang, Huan Xiong, Heng Huang

    6765-6773

    PDF
  • Theoretical Guarantees of Fictitious Discount Algorithms for Episodic Reinforcement Learning and Global Convergence of Policy Gradient Methods

    Xin Guo, Anran Hu, Junzi Zhang

    6774-6782

    PDF
  • Adaptive Orthogonal Projection for Batch and Online Continual Learning

    Yiduo Guo, Wenpeng Hu, Dongyan Zhao, Bing Liu

    6783-6791

    PDF
  • Learning Action Translator for Meta Reinforcement Learning on Sparse-Reward Tasks

    Yijie Guo, Qiucheng Wu, Honglak Lee

    6792-6800

    PDF
  • Self-Supervised Pre-training for Protein Embeddings Using Tertiary Structures

    Yuzhi Guo, Jiaxiang Wu, Hehuan Ma, Junzhou Huang

    6801-6809

    PDF
  • Improved Gradient-Based Adversarial Attacks for Quantized Networks

    Kartik Gupta, Thalaiyasingam Ajanthan

    6810-6818

    PDF
  • TIGGER: Scalable Generative Modelling for Temporal Interaction Graphs

    Shubham Gupta, Sahil Manchanda, Srikanta Bedathur, Sayan Ranu

    6819-6828

    PDF
  • A Generalized Bootstrap Target for Value-Learning, Efficiently Combining Value and Feature Predictions

    Anthony GX-Chen, Veronica Chelu, Blake A. Richards, Joelle Pineau

    6829-6837

    PDF
  • Oscillatory Fourier Neural Network: A Compact and Efficient Architecture for Sequential Processing

    Bing Han, Cheng Wang, Kaushik Roy

    6838-6846

    PDF
  • End-to-End Probabilistic Label-Specific Feature Learning for Multi-Label Classification

    Jun-Yi Hang, Min-Ling Zhang, Yanghe Feng, Xiaocheng Song

    6847-6855

    PDF
  • Cross-Domain Few-Shot Graph Classification

    Kaveh Hassani

    6856-6864

    PDF
  • SpreadGNN: Decentralized Multi-Task Federated Learning for Graph Neural Networks on Molecular Data

    Chaoyang He, Emir Ceyani, Keshav Balasubramanian, Murali Annavaram, Salman Avestimehr

    6865-6873

    PDF
  • Bayesian Optimization over Permutation Spaces

    Aryan Deshwal, Syrine Belakaria, Janardhan Rao Doppa, Dae Hyun Kim

    6515-6523

    PDF
  • Meta Propagation Networks for Graph Few-shot Semi-supervised Learning

    Kaize Ding, Jianling Wang, James Caverlee, Huan Liu

    6524-6531

    PDF
  • Online Certification of Preference-Based Fairness for Personalized Recommender Systems

    Virginie Do, Sam Corbett-Davies, Jamal Atif, Nicolas Usunier

    6532-6540

    PDF
  • Disentangled Spatiotemporal Graph Generative Models

    Yuanqi Du, Xiaojie Guo, Hengning Cao, Yanfang Ye, Liang Zhao

    6541-6549

    PDF
  • Learning from the Dark: Boosting Graph Convolutional Neural Networks with Diverse Negative Samples

    Wei Duan, Junyu Xuan, Maoying Qiao, Jie Lu

    6550-6558

    PDF
  • Adaptive and Universal Algorithms for Variational Inequalities with Optimal Convergence

    Alina Ene, Huy Lê Nguyễn

    6559-6567

    PDF
  • Zero-Shot Out-of-Distribution Detection Based on the Pre-trained Model CLIP

    Sepideh Esmaeilpour, Bing Liu, Eric Robertson, Lei Shu

    6568-6576

    PDF
  • Gradient Flow in Sparse Neural Networks and How Lottery Tickets Win

    Utku Evci, Yani Ioannou, Cem Keskin, Yann Dauphin

    6577-6586

    PDF
  • Dynamic Nonlinear Matrix Completion for Time-Varying Data Imputation

    Jicong Fan

    6587-6596

    PDF
  • Up to 100x Faster Data-Free Knowledge Distillation

    Gongfan Fang, Kanya Mo, Xinchao Wang, Jie Song, Shitao Bei, Haofei Zhang, Mingli Song

    6597-6604

    PDF
  • Learning Aligned Cross-Modal Representation for Generalized Zero-Shot Classification

    Zhiyu Fang, Xiaobin Zhu, Chun Yang, Zheng Han, Jingyan Qin, Xu-Cheng Yin

    6605-6613

    PDF
  • KerGNNs: Interpretable Graph Neural Networks with Graph Kernels

    Aosong Feng, Chenyu You, Shiqiang Wang, Leandros Tassiulas

    6614-6622

    PDF
  • Scaling Neural Program Synthesis with Distribution-Based Search

    Nathanaël Fijalkow, Guillaume Lagarde, Théo Matricon, Kevin Ellis, Pierre Ohlmann, Akarsh Nayan Potta

    6623-6630

    PDF
  • Modification-Fair Cluster Editing

    Vincent Froese, Leon Kellerhals, Rolf Niedermeier

    6631-6638

    PDF
  • Reinforcement Learning Based Dynamic Model Combination for Time Series Forecasting

    Yuwei Fu, Di Wu, Benoit Boulet

    6639-6647

    PDF
  • JFB: Jacobian-Free Backpropagation for Implicit Networks

    Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel Mckenzie, Stanley Osher, Wotao Yin

    6648-6656

    PDF
  • Smoothing Advantage Learning

    Yaozhong Gan, Zhe Zhang, Xiaoyang Tan

    6657-6664

    PDF
  • Enhancing Counterfactual Classification Performance via Self-Training

    Ruijiang Gao, Max Biggs, Wei Sun, Ligong Han

    6665-6673

    PDF
  • Learning V1 Simple Cells with Vector Representation of Local Content and Matrix Representation of Local Motion

    Ruiqi Gao, Jianwen Xie, Siyuan Huang, Yufan Ren, Song-Chun Zhu, Ying Nian Wu

    6674-6684

    PDF
  • Algorithmic Concept-Based Explainable Reasoning

    Dobrik Georgiev, Pietro Barbiero, Dmitry Kazhdan, Petar Veličković, Pietro Lió

    6685-6693

    PDF
  • ASM2TV: An Adaptive Semi-supervised Multi-Task Multi-View Learning Framework for Human Activity Recognition

    Zekai Chen, Xiao Zhang, Xiuzhen Cheng

    6342-6349

    PDF
  • Identification of Linear Latent Variable Model with Arbitrary Distribution

    Zhengming Chen, Feng Xie, Jie Qiao, Zhifeng Hao, Kun Zhang, Ruichu Cai

    6350-6357

    PDF
  • DPNAS: Neural Architecture Search for Deep Learning with Differential Privacy

    Anda Cheng, Jiaxing Wang, Xi Sheryl Zhang, Qiang Chen, Peisong Wang, Jian Cheng

    6358-6366

    PDF
  • Graph Neural Controlled Differential Equations for Traffic Forecasting

    Jeongwhan Choi, Hwangyong Choi, Jeehyun Hwang, Noseong Park

    6367-6374

    PDF
  • Differentially Private Regret Minimization in Episodic Markov Decision Processes

    Sayak Ray Chowdhury, Xingyu Zhou

    6375-6383

    PDF
  • Learning by Competition of Self-Interested Reinforcement Learning Agents

    Stephen Chung

    6384-6393

    PDF
  • How to Distribute Data across Tasks for Meta-Learning?

    Alexandru Cioba, Michael Bromberg, Qian Wang, Ritwik Niyogi, Georgios Batzolis, Jezabel Garcia, Da-shan Shiu, Alberto Bernacchia

    6394-6401

    PDF
  • Similarity Search for Efficient Active Learning and Search of Rare Concepts

    Cody Coleman, Edward Chou, Julian Katz-Samuels, Sean Culatana, Peter Bailis, Alexander C. Berg, Robert Nowak, Roshan Sumbaly, Matei Zaharia, I. Zeki Yalniz

    6402-6410

    PDF
  • Learning Influence Adoption in Heterogeneous Networks

    Vincent Conitzer, Debmalya Panigrahi, Hanrui Zhang

    6411-6419

    PDF
  • Graph-Wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning

    Thilini Cooray, Ngai-Man Cheung

    6420-6428

    PDF
  • Reinforcement Learning with Stochastic Reward Machines

    Jan Corazza, Ivan Gavran, Daniel Neider

    6429-6436

    PDF
  • Sparse-RS: A Versatile Framework for Query-Efficient Sparse Black-Box Adversarial Attacks

    Francesco Croce, Maksym Andriushchenko, Naman D. Singh, Nicolas Flammarion, Matthias Hein

    6437-6445

    PDF
  • Learning Logic Programs Though Divide, Constrain, and Conquer

    Andrew Cropper

    6446-6453

    PDF
  • Implicit Gradient Alignment in Distributed and Federated Learning

    Yatin Dandi, Luis Barba, Martin Jaggi

    6454-6462

    PDF
  • How Good Are Low-Rank Approximations in Gaussian Process Regression?

    Constantinos Daskalakis, Petros Dellaportas, Aristeidis Panos

    6463-6470

    PDF
  • KOALA: A Kalman Optimization Algorithm with Loss Adaptivity

    Aram Davtyan, Sepehr Sameni, Llukman Cerkezi, Givi Meishvili, Adam Bielski, Paolo Favaro

    6471-6479

    PDF
  • First-Order Convex Fitting and Its Application to Economics and Optimization

    Quinlan Dawkins, Minbiao Han, Haifeng Xu

    6480-6487

    PDF
  • Gradient Temporal Difference with Momentum: Stability and Convergence

    Rohan Deb, Shalabh Bhatnagar

    6488-6496

    PDF
  • Distillation of RL Policies with Formal Guarantees via Variational Abstraction of Markov Decision Processes

    Florent Delgrange, Ann Nowé, Guillermo A. Pérez

    6497-6505

    PDF
  • Reducing Flipping Errors in Deep Neural Networks

    Xiang Deng, Yun Xiao, Bo Long, Zhongfei Zhang

    6506-6514

    PDF
  • Safe Online Convex Optimization with Unknown Linear Safety Constraints

    Sapana Chaudhary, Dileep Kalathil

    6175-6182

    PDF
  • Deconvolutional Density Network: Modeling Free-Form Conditional Distributions

    Bing Chen, Mazharul Islam, Jisuo Gao, Lin Wang

    6183-6192

    PDF
  • Multiscale Generative Models: Improving Performance of a Generative Model Using Feedback from Other Dependent Generative Models

    Changyu Chen, Avinandan Bose, Shih-Fen Cheng, Arunesh Sinha

    6193-6201

    PDF
  • Simultaneously Learning Stochastic and Adversarial Bandits under the Position-Based Model

    Cheng Chen, Canzhe Zhao, Shuai Li

    6202-6210

    PDF
  • Clustering Interval-Censored Time-Series for Disease Phenotyping

    Irene Y. Chen, Rahul G. Krishnan, David Sontag

    6211-6221

    PDF
  • Efficient Robust Training via Backward Smoothing

    Jinghui Chen, Yu Cheng, Zhe Gan, Quanquan Gu, Jingjing Liu

    6222-6230

    PDF
  • An Online Learning Approach to Sequential User-Centric Selection Problems

    Junpu Chen, Hong Xie

    6231-6238

    PDF
  • Better Parameter-Free Stochastic Optimization with ODE Updates for Coin-Betting

    Keyi Chen, John Langford, Francesco Orabona

    6239-6247

    PDF
  • Mutual Nearest Neighbor Contrast and Hybrid Prototype Self-Training for Universal Domain Adaptation

    Liang Chen, Qianjin Du, Yihang Lou, Jianzhong He, Tao Bai, Minghua Deng

    6248-6257

    PDF
  • Evidential Neighborhood Contrastive Learning for Universal Domain Adaptation

    Liang Chen, Yihang Lou, Jianzhong He, Tao Bai, Minghua Deng

    6258-6267

    PDF
  • Zero Stability Well Predicts Performance of Convolutional Neural Networks

    Liangming Chen, Long Jin, Mingsheng Shang

    6268-6277

    PDF
  • Semi-supervised Learning with Multi-Head Co-Training

    Mingcai Chen, Yuntao Du, Yi Zhang, Shuwei Qian, Chongjun Wang

    6278-6286

    PDF
  • Instance Selection: A Bayesian Decision Theory Perspective

    Qingqiang Chen, Fuyuan Cao, Ying Xing, Jiye Liang

    6287-6294

    PDF
  • Input-Specific Robustness Certification for Randomized Smoothing

    Ruoxin Chen, Jie Li, Junchi Yan, Ping Li, Bin Sheng

    6295-6303

    PDF
  • Multimodal Adversarially Learned Inference with Factorized Discriminators

    Wenxue Chen, Jianke Zhu

    6304-6312

    PDF
  • Imbalance-Aware Uplift Modeling for Observational Data

    Xuanying Chen, Zhining Liu, Li Yu, Liuyi Yao, Wenpeng Zhang, Yi Dong, Lihong Gu, Xiaodong Zeng, Yize Tan, Jinjie Gu

    6313-6321

    PDF
  • KAM Theory Meets Statistical Learning Theory: Hamiltonian Neural Networks with Non-zero Training Loss

    Yuhan Chen, Takashi Matsubara, Takaharu Yaguchi

    6322-6332

    PDF
  • BScNets: Block Simplicial Complex Neural Networks

    Yuzhou Chen, Yulia R. Gel, H. Vincent Poor

    6333-6341

    PDF
  • A Unifying Theory of Thompson Sampling for Continuous Risk-Averse Bandits

    Joel Q. L. Chang, Vincent Y. F. Tan

    6159-6166

    PDF
  • Locally Private k-Means Clustering with Constant Multiplicative Approximation and Near-Optimal Additive Error

    Anamay Chaturvedi, Matthew Jones, Huy Lê Nguyễn

    6167-6174

    PDF
  • Private Rank Aggregation in Central and Local Models

    Daniel Alabi, Badih Ghazi, Ravi Kumar, Pasin Manurangsi

    5984-5991

    PDF
  • Combating Adversaries with Anti-adversaries

    Motasem Alfarra, Juan C. Perez, Ali Thabet, Adel Bibi, Philip H.S. Torr, Bernard Ghanem

    5992-6000

    PDF
  • DeformRS: Certifying Input Deformations with Randomized Smoothing

    Motasem Alfarra, Adel Bibi, Naeemullah Khan, Philip H.S. Torr, Bernard Ghanem

    6001-6009

    PDF
  • Latent Time Neural Ordinary Differential Equations

    Srinivas Anumasa, P. K. Srijith

    6010-6018

    PDF
  • Beyond GNNs: An Efficient Architecture for Graph Problems

    Pranjal Awasthi, Abhimanyu Das, Sreenivas Gollapudi

    6019-6027

    PDF
  • Programmatic Modeling and Generation of Real-Time Strategic Soccer Environments for Reinforcement Learning

    Abdus Salam Azad, Edward Kim, Qiancheng Wu, Kimin Lee, Ion Stoica, Pieter Abbeel, Alberto Sangiovanni-Vincentelli, Sanjit A. Seshia

    6028-6036

    PDF
  • Admissible Policy Teaching through Reward Design

    Kiarash Banihashem, Adish Singla, Jiarui Gan, Goran Radanovic

    6037-6045

    PDF
  • Entropy-Based Logic Explanations of Neural Networks

    Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini, Pietro Lió, Marco Gori, Stefano Melacci

    6046-6054

    PDF
  • Training Robust Deep Models for Time-Series Domain: Novel Algorithms and Theoretical Analysis

    Taha Belkhouja, Yan Yan, Janardhan Rao Doppa

    6055-6063

    PDF
  • A Fast Algorithm for PAC Combinatorial Pure Exploration

    Noa Ben-David, Sivan Sabato

    6064-6071

    PDF
  • Modeling Attrition in Recommender Systems with Departing Bandits

    Omer Ben-Porat, Lee Cohen, Liu Leqi, Zachary C. Lipton, Yishay Mansour

    6072-6079

    PDF
  • Federated Dynamic Sparse Training: Computing Less, Communicating Less, Yet Learning Better

    Sameer Bibikar, Haris Vikalo, Zhangyang Wang, Xiaohan Chen

    6080-6088

    PDF
  • Robust and Resource-Efficient Data-Free Knowledge Distillation by Generative Pseudo Replay

    Kuluhan Binici, Shivam Aggarwal, Nam Trung Pham, Karianto Leman, Tulika Mitra

    6089-6096

    PDF
  • ErfAct and Pserf: Non-monotonic Smooth Trainable Activation Functions

    Koushik Biswas, Sandeep Kumar, Shilpak Banerjee, Ashish Kumar Pandey

    6097-6105

    PDF
  • Feedback Gradient Descent: Efficient and Stable Optimization with Orthogonality for DNNs

    Fanchen Bu, Dong Eui Chang

    6106-6114

    PDF
  • Breaking the Convergence Barrier: Optimization via Fixed-Time Convergent Flows

    Param Budhraja, Mayank Baranwal, Kunal Garg, Ashish Hota

    6115-6122

    PDF
  • Shrub Ensembles for Online Classification

    Sebastian Buschjäger, Sibylle Hess, Katharina J. Morik

    6123-6131

    PDF
  • NoiseGrad — Enhancing Explanations by Introducing Stochasticity to Model Weights

    Kirill Bykov, Anna Hedström, Shinichi Nakajima, Marina M.-C. Höhne

    6132-6140

    PDF
  • Leaping through Time with Gradient-Based Adaptation for Recommendation

    Nuttapong Chairatanakul, Hoang NT, Xin Liu, Tsuyoshi Murata

    6141-6149

    PDF
  • Active Sampling for Text Classification with Subinstance Level Queries

    Shayok Chakraborty, Ankita Singh

    6150-6158

    PDF
  • Context-Specific Representation Abstraction for Deep Option Learning

    Marwa Abdulhai, Dong-Ki Kim, Matthew Riemer, Miao Liu, Gerald Tesauro, Jonathan P. How

    5959-5967

    PDF
  • FisheyeHDK: Hyperbolic Deformable Kernel Learning for Ultra-Wide Field-of-View Image Recognition

    Ola Ahmad, Freddy Lecue

    5968-5975

    PDF
  • Distributed Learning with Strategic Users: A Repeated Game Approach

    Abdullah B Akbay, Junshan Zhang

    5976-5983

    PDF

Primary Sidebar