Proceedings:
Third International Conference on Multistrategy Learning
Volume
Issue:
Third International Conference on Multistrategy Learning
Track:
Contents
Downloads:
Abstract:
This research concerns the development of a methodology for representing, planning and executing multitype inferences in a multistrategy task-adaptive learning system. These inferences, defined in the Inferential Theory of Learning as knowledge transmutations, are generic types of knowledge operators, and are assumed to underlie all learning processes. The paper shows how several basic knowledge transmutations can be seamlessly integrated using a knowledge representation based on dynamic interlaced hierarchies (DIH). The implemented system, INTERLACE, includes an interactive graphical user interface for visualizing knowledge transmutations that are being performed by the system. INTERLACE is illustrated by several examples.
MSL
Third International Conference on Multistrategy Learning