• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • News
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

  • Twitter
  • Facebook
  • LinkedIn
Home / Proceedings / Proceedings of the International Conference on Automated Planning and Scheduling, 13 / Book One

A Multi-Agent System-driven AI Planning Approach to Biological Pathway Discovery

July 17, 2023

Download PDF

Abstract:

As genomic and proteomic data is collected from highthroughput methods on a daily basis, subcellular components are identified and their in vitro behavior is characterized. However, much less is known of their in vivo activity because of the complex subcellular milieu they operate within. A component’s milieu is determined by the biological pathways it participates in, and hence, the mechanisms by which it is regulated. We believe AI planning technology provides a modeling formalism for the task of biological pathway discovery, such that hypothetical pathways can be generated, queried and qualitatively simulated. The task of signal transduction pathway discovery is re-cast as a planning problem, one in which the initial and final states are known and cellular processes captured as abstract operators that modify the cellular environment. Thus, a valid plan that transforms the initial state into a goal state is a hypothetical pathway that prescribes the order of signaling events that must occur to effect the goal state. The planner is driven by data that is stored within a knowledge base and retrieved from heterogeneous sources (including gene expression, protein-protein interaction and literature mining) by a multi-agent information gathering system. We demonstrate the combined technology by translating the well-known EGF pathway into the planning formalism and deploying the Fast-Forward planner to reconstruct the pathway directly from the knowledge base.

Authors

Salim Khan

William Gillis

Carl Schmidt

and Keith Decker

DOI:


Topics: ICAPS

Primary Sidebar

HOW TO CITE:

Salim Khan||William Gillis||Carl Schmidt||and Keith Decker A Multi-Agent System-driven AI Planning Approach to Biological Pathway Discovery Proceedings of the International Conference on Automated Planning and Scheduling, 13 (2003) .

Salim Khan||William Gillis||Carl Schmidt||and Keith Decker A Multi-Agent System-driven AI Planning Approach to Biological Pathway Discovery ICAPS 2003, .

Salim Khan||William Gillis||Carl Schmidt||and Keith Decker (2003). A Multi-Agent System-driven AI Planning Approach to Biological Pathway Discovery. Proceedings of the International Conference on Automated Planning and Scheduling, 13, .

Salim Khan||William Gillis||Carl Schmidt||and Keith Decker. A Multi-Agent System-driven AI Planning Approach to Biological Pathway Discovery. Proceedings of the International Conference on Automated Planning and Scheduling, 13 2003 p..

Salim Khan||William Gillis||Carl Schmidt||and Keith Decker. 2003. A Multi-Agent System-driven AI Planning Approach to Biological Pathway Discovery. "Proceedings of the International Conference on Automated Planning and Scheduling, 13". .

Salim Khan||William Gillis||Carl Schmidt||and Keith Decker. (2003) "A Multi-Agent System-driven AI Planning Approach to Biological Pathway Discovery", Proceedings of the International Conference on Automated Planning and Scheduling, 13, p.

Salim Khan||William Gillis||Carl Schmidt||and Keith Decker, "A Multi-Agent System-driven AI Planning Approach to Biological Pathway Discovery", ICAPS, p., 2003.

Salim Khan||William Gillis||Carl Schmidt||and Keith Decker. "A Multi-Agent System-driven AI Planning Approach to Biological Pathway Discovery". Proceedings of the International Conference on Automated Planning and Scheduling, 13, 2003, p..

Salim Khan||William Gillis||Carl Schmidt||and Keith Decker. "A Multi-Agent System-driven AI Planning Approach to Biological Pathway Discovery". Proceedings of the International Conference on Automated Planning and Scheduling, 13, (2003): .

Salim Khan||William Gillis||Carl Schmidt||and Keith Decker. A Multi-Agent System-driven AI Planning Approach to Biological Pathway Discovery. ICAPS[Internet]. 2003[cited 2023]; .


ISSN:


Published by AAAI Press, Palo Alto, California USA
Copyright 2022, Association for the Advancement of
Artificial Intelligence 1900 Embarcadero Road, Suite
101, Palo Alto, California 94303 All Rights Reserved

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT