Track:
All Papers
Downloads:
Abstract:
Standard MIDI files contain data that can be considered as a symbolic representation of music (a digital score), and most of them are structured as a number of tracks, one of them usually containing the melodic line of the piece, while the other tracks contain the accompaniment. The objective of this work is to identify the track containing the melody using statistical properties of the notes and pattern recognition techniques. Finding that track is very useful for a number of applications, like melody matching when searching in MIDI databases or motif extraction, among others. First, a set of descriptors from each track of the target file are extracted. These descriptors are the input to a random forest classifier that assigns the probability of being a melodic line to each track. The track with the highest probability is selected as the one containing the melodic line of that MIDI file. Promising results have been obtained testing a number of databases of different music styles.