Published:
May 2004
Proceedings:
Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2004)
Volume
Issue:
Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2004)
Track:
All Papers
Downloads:
Abstract:
How to compute marginals efficiently is one of major concerned problems in probabilistic reasoning systems. Traditional graphical models do not preserve all conditional independencies while computing the marginals. That is, the Bayesian DAGs have to be transformed into a secondary computational structure, normally, acyclic hypergraphs, in order to compute marginals. It is well-known that some conditional independencies will be lost in such a transformation. In this paper, we suggest a new graphical model which not only equivalents to a Bayesian DAG, but also takes advantages of all conditional independencies to compute marginals. The input to our model is a set of conditional probability tables as in the traditional approach.
FLAIRS
Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2004)
ISBN 978-1-57735-201-3
Published by The AAAI Press, Menlo Park, California.