Abstract:
As organizations accumulate data over time, the problem of tracking how patterns evolve becomes important. In this paper, we present an algorithm to track the evolution of cluster models in a stream of data. Our algorithm is based on the application of bounds derived using Chernoff’s inequality and makes use of a clustering algorithm that was previously developed by us, namely Practal Clustering, which uses self-similarity as the property to group points together. Experiments show that our tracking algorithm is efficient and effective in finding changes on the patterns.
Published Date: May 2001
Registration: ISBN 978-1-57735-133-7
Copyright: Published by The AAAI Press, Menlo Park, California.