Abstract:
Human language is extraordinarily creative in form and function, and adapting to this ever-shifting linguistic landscape is a daunting task for interactive cognitive systems. Recently, construction grammar has emerged as a linguistic theory for representing these complex and often idiomatic linguistic forms. Furthermore, analogical generalization has been proposed as a learning mechanism for extracting linguistic constructions from input. I propose an account that uses a computational model of analogy to learn and generalize argument structure constructions.
DOI:
10.1609/aaai.v30i1.9814