• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
    • News
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

Home / Proceedings / Proceedings of the AAAI Conference on Artificial Intelligence, 29 / No.1: The Twenty-Ninth Conference on Artificial Intelligence

Large-Margin Multi-Label Causal Feature Learning

March 8, 2023

Download PDF

Authors

Chang Xu

Peking University


Dacheng Tao

Univiersity of Technology, Sydney


Chao Xu

Peking University


DOI:

10.1609/aaai.v29i1.9450


Abstract:

In multi-label learning, an example is represented by a descriptive feature associated with several labels. Simply considering labels as independent or correlated is crude; it would be beneficial to define and exploit the causality between multiple labels. For example, an image label 'lake' implies the label 'water', but not vice versa. Since the original features are a disorderly mixture of the properties originating from different labels, it is intuitive to factorize these raw features to clearly represent each individual label and its causality relationship.Following the large-margin principle, we propose an effective approach to discover the causal features of multiple labels, thus revealing the causality between labels from the perspective of feature. We show theoretically that the proposed approach is a tight approximation of the empirical multi-label classification error, and the causality revealed strengthens the consistency of the algorithm. Extensive experimentations using synthetic and real-world data demonstrate that the proposed algorithm effectively discovers label causality, generates causal features, and improves multi-label learning.

Topics: AAAI

Primary Sidebar

HOW TO CITE:

Chang Xu|| Dacheng Tao|| Chao Xu Large-Margin Multi-Label Causal Feature Learning Proceedings of the AAAI Conference on Artificial Intelligence, 29 (2015) .

Chang Xu|| Dacheng Tao|| Chao Xu Large-Margin Multi-Label Causal Feature Learning AAAI 2015, .

Chang Xu|| Dacheng Tao|| Chao Xu (2015). Large-Margin Multi-Label Causal Feature Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 29, .

Chang Xu|| Dacheng Tao|| Chao Xu. Large-Margin Multi-Label Causal Feature Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 29 2015 p..

Chang Xu|| Dacheng Tao|| Chao Xu. 2015. Large-Margin Multi-Label Causal Feature Learning. "Proceedings of the AAAI Conference on Artificial Intelligence, 29". .

Chang Xu|| Dacheng Tao|| Chao Xu. (2015) "Large-Margin Multi-Label Causal Feature Learning", Proceedings of the AAAI Conference on Artificial Intelligence, 29, p.

Chang Xu|| Dacheng Tao|| Chao Xu, "Large-Margin Multi-Label Causal Feature Learning", AAAI, p., 2015.

Chang Xu|| Dacheng Tao|| Chao Xu. "Large-Margin Multi-Label Causal Feature Learning". Proceedings of the AAAI Conference on Artificial Intelligence, 29, 2015, p..

Chang Xu|| Dacheng Tao|| Chao Xu. "Large-Margin Multi-Label Causal Feature Learning". Proceedings of the AAAI Conference on Artificial Intelligence, 29, (2015): .

Chang Xu|| Dacheng Tao|| Chao Xu. Large-Margin Multi-Label Causal Feature Learning. AAAI[Internet]. 2015[cited 2023]; .


ISSN: 2374-3468


Published by AAAI Press, Palo Alto, California USA
Copyright 2022, Association for the Advancement of
Artificial Intelligence 1900 Embarcadero Road, Suite
101, Palo Alto, California 94303 All Rights Reserved

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT