Proceedings:
No. 18: AAAI-21 Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Demonstration Track
Downloads:
Abstract:
When deploying a robot to a new task, one often has to train it to detect novel objects, which is time-consuming and labor- intensive. We present TAILOR - a method and system for ob- ject registration with active and incremental learning. When instructed by a human teacher to register an object, TAILOR is able to automatically select viewpoints to capture informa- tive images by actively exploring viewpoints, and employs a fast incremental learning algorithm to learn new objects without potential forgetting of previously learned objects. We demonstrate the effectiveness of our method with a KUKA robot to learn novel objects used in a real-world gearbox as- sembly task through natural interactions.
DOI:
10.1609/aaai.v35i18.18031
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35