Proceedings:
No. 18: AAAI-21 Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Undergraduate Consortium
Downloads:
Abstract:
We propose a MOTIF-driven contrastive framework to pretrain a graph neural network in a self-supervised manner so that it can automatically mine motifs from large graph datasets. Our framework achieves state-of-the-art results on various graph-level downstream tasks with few labels, like molecular property prediction.
DOI:
10.1609/aaai.v35i18.17986
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35