Proceedings:
No. 18: AAAI-21 Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Undergraduate Consortium
Downloads:
Abstract:
Automated deception detection systems can enhance societal well-being by helping humans detect deceivers and support people in high-stakes situations across health, social work, and legal domains. Existing computational approaches for detecting deception have not leveraged dimensional representations of affect, specifically valence and arousal, expressed during communication. My research presents a novel analysis of the potential for including affect in machine learning models for detecting deception. My work informs and motivates the development of affect-aware machine learning approaches for modeling deception and other social behaviors during human interactions in-the-wild. This research, independently defined and conducted by me, is from work-in-progress towards my undergraduate thesis in the Department of Computer Science at the University of Southern California.
DOI:
10.1609/aaai.v35i18.17980
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35