Proceedings:
No. 18: AAAI-21 Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Student Abstract and Poster Program
Downloads:
Abstract:
Code-mixing is the practice of alternating between two or more languages. A major part of sentiment analysis research has been monolingual and they perform poorly on the code-mixed text. We introduce methods that use multilingual and cross-lingual embeddings to transfer knowledge from monolingual text to code-mixed text for code-mixed sentiment analysis. Our methods handle code-mixed text through zero-shot learning and beat state-of-the-art English-Spanish code-mixed sentiment analysis by an absolute 3% F1-score. We are able to achieve 0.58 F1-score (without a parallel corpus) and 0.62 F1-score (with the parallel corpus) on the same benchmark in a zero-shot way as compared to 0.68 F1-score in supervised settings. Our code is publicly available on github.com/sedflix/unsacmt.
DOI:
10.1609/aaai.v35i18.17967
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35