Proceedings:
No. 18: AAAI-21 Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Student Abstract and Poster Program
Downloads:
Abstract:
Deep learning based methods have achieved remarkable success in image restoration and enhancement, but a majority of such methods rely on RGB input images. These methods fail to take into account the rich spectral distribution of natural images. We propose a deep architecture, SpecNet which computes spectral profile to estimate pixel-wise dynamic range adjustment of a given image. First, we employ an unpaired cycle-consistent framework to generate hyperspectral images (HSI) from low-light input images. HSI are further used to generate a normal light image of the same scene. In order to infer a plausible HSI from a RGB image we incorporate a self-supervision and a spectral profile regularization network. We evaluate the benefits of optimizing the spectral profile for real and fake images in low-light conditions on the LOL Dataset.
DOI:
10.1609/aaai.v35i18.17944
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35