Proceedings:
No. 18: AAAI-21 Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Student Abstract and Poster Program
Downloads:
Abstract:
Modern machine learning algorithms typically require large amounts of labeled training data to fit a reliable model. To minimize the cost of data collection, researchers often employ techniques such as crowdsourcing and web scraping. However, web data and human annotations are known to exhibit high margins of error, resulting in sizable amounts of incorrect labels. Poorly labeled training data can cause models to overfit to the noise distribution, crippling performance in real-world applications. In this work, we investigate the viability of using data augmentation in conjunction with semi-supervised learning to improve the label noise robustness of image classification models. We conduct several experiments using noisy variants of the CIFAR-10 image classification dataset to benchmark our method against existing algorithms. Experimental results show that our augmentative SSL approach improves upon the state-of-the-art.
DOI:
10.1609/aaai.v35i18.17924
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35