DOI:
10.1609/aaai.v35i18.17898
Abstract:
This paper aims to bridge this gap between neuro-symbolic learning (NSL) and graph neural networks (GNN) approaches and provide a comparative study. We argue that the natural evolution of NSL leads to GNNs, while the logic programming foundations of NSL can bring powerful tools to improve the way information is represented and pre-processed for the GNN. In order to make this comparison, we propose HetSAGE, a GNN architecture that can efficiently deal with the resulting heterogeneous graphs that represent typical NSL learning problems. We show that our approach outperforms the state-of-the-art on 3 NSL tasks: CORA, MUTA188 and MovieLens.