Proceedings:
No. 17: IAAI-21, EAAI-21, AAAI-21 Special Programs and Special Track
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
EAAI Symposium: Full Papers
Downloads:
Abstract:
In this article, we describe various approaches to opponent hand estimation in the card game Gin Rummy. We use an application of Bayes' rule, as well as both simple and convolutional neural networks, to recognize patterns in simulated game play and predict the opponent's hand. We also present a new minimal-sized construction for using arrays to pre-populate hand representation images. Finally, we define various metrics for evaluating estimations, and evaluate the strengths of our different estimations at different stages of the game.
DOI:
10.1609/aaai.v35i17.17824
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35