Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
Track:
Student Abstract Track
Downloads:
Abstract:
Fast retrieval efficiency and high performance hashing, which aims to convert multimedia data into a set of short binary codes while preserving the similarity of the original data, has been widely studied in recent years. Majority of the existing deep supervised hashing methods only utilize the semantics of a whole image in learning hash codes, but ignore the local image details, which are important in hash learning. To fully utilize the detailed information, we propose a novel deep multi-region hashing (DMRH), which learns hash codes from local regions, and in which the final hash codes of the image are obtained by fusing the local hash codes corresponding to local regions. In addition, we propose a self-similarity loss term to address the imbalance problem (i.e., the number of dissimilar pairs is significantly more than that of the similar ones) of methods based on pairwise similarity.
DOI:
10.1609/aaai.v34i10.7268
AAAI
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved