Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
Track:
Student Abstract Track
Downloads:
Abstract:
Kidney exchange is an organized barter market that allows patients with end-stage renal disease to trade willing donors—and thus kidneys—with other patient-donor pairs. The central clearing problem is to find an arrangement of swaps that maximizes the number of transplants. It is known to be NP-hard in almost all cases. Most existing approaches have modeled this problem as a mixed integer program (MIP), using classical branch-and-price-based tree search techniques to optimize. In this paper, we frame the clearing problem as a Maximum Weighted Independent Set (MWIS) problem, and use a Graph Neural Network guided Monte Carlo Tree Search to find a solution. Our initial results show that this approach outperforms baseline (non-optimal but scalable) algorithms. We believe that a learning-based optimization algorithm can improve upon existing approaches to the kidney exchange clearing problem.
DOI:
10.1609/aaai.v34i10.7267
AAAI
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved