Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
Track:
Student Abstract Track
Downloads:
Abstract:
Applications of machine learning in biomedical prediction tasks are often limited by datasets that are unrepresentative of the sampling population. In these situations, we can no longer rely only on the the training data to learn the relations between features and the prediction outcome. Our method proposes to learn an inductive bias that indicates the relevance of each feature to outcomes through literature mining in PubMed, a centralized source of biomedical documents. The inductive bias acts as a source of prior knowledge from experts, which we leverage by imposing an extra penalty for model weights that differ from this inductive bias. We empirically evaluate our method on a medical prediction task and highlight the importance of incorporating expert knowledge that can capture relations not present in the training data.
DOI:
10.1609/aaai.v34i10.7264
AAAI
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved