Abstract:
One key task of fine-grained sentiment analysis on reviews is to extract aspects or features that users have expressed opinions on. Generally, fine-tuning BERT with sophisticated task-specific layers can achieve better performance than only extend one extra task-specific layer (e.g., a fully-connected + softmax layer) since not all tasks can easily be represented by Transformer encoder architecture and special task-specific layer can capture task-specific features. However, BERT fine-tuning may be unstable on a small-scale dataset. Besides, in our experiments, directly fine-tuning BERT on extending sophisticated task-specific layers did not take advantage of the features of task-specific layers and even restrict the performance of BERT module. To address the above consideration, this paper combines Fine-tuning with a feature-based approach to extract aspect. To the best of our knowledge, this is the first paper to combine fine-tuning with a feature-based approach for aspect extraction.

Published Date: 2020-06-02
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved
DOI:
10.1609/aaai.v34i10.7248