Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
Track:
Student Abstract Track
Downloads:
Abstract:
Chordal graphs are a widely studied graph class, with applications in several areas of computer science, including structural learning of Bayesian networks. Many problems that are hard on general graphs become solvable on chordal graphs. The random generation of instances of chordal graphs for testing these algorithms is often required. Nevertheless, there are only few known algorithms that generate random chordal graphs, and, as far as we know, none of them generate chordal graphs uniformly at random (where each chordal graph appears with equal probability). In this paper we propose a Markov chain Monte Carlo (MCMC) method to sample connected chordal graphs uniformly at random. Additionally, we propose a Markov chain that generates connected chordal graphs with a bounded treewidth uniformly at random. Bounding the treewidth parameter (which bounds the largest clique) has direct implications on the running time of various algorithms on chordal graphs. For each of the proposed Markov chains we prove that they are ergodic and therefore converge to the uniform distribution. Finally, as initial evidence that the Markov chains have the potential to mix rapidly, we prove that the chain on graphs with bounded treewidth mixes rapidly for trees (chordal graphs with treewidth bound of one).
DOI:
10.1609/aaai.v34i10.7237
AAAI
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved