Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
Track:
Student Abstract Track
Downloads:
Abstract:
Modern theorem provers utilise a wide array of heuristics to control the search space explosion, thereby requiring optimisation of a large set of parameters. An exhaustive search in this multi-dimensional parameter space is intractable in most cases, yet the performance of the provers is highly dependent on the parameter assignment. In this work, we introduce a principled probabilistic framework for heuristic optimisation in theorem provers. We present results using a heuristic for premise selection and the Archive of Formal Proofs (AFP) as a case study.
DOI:
10.1609/aaai.v34i10.7232
AAAI
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved