Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
Track:
Student Abstract Track
Downloads:
Abstract:
Sarcasm detection plays an important role in natural language processing as it has been considered one of the most challenging subtasks in sentiment analysis and opinion mining applications. Our work aims to detect sarcasm in social media sites and discussion forums, exploiting the potential of deep neural networks and multi-task learning. Specifically, relying on the strong correlation between sarcasm and (implied negative) sentiment, we explore a multi-task learning framework that uses sentiment classification as an auxiliary task to inform the main task of sarcasm detection. Our proposed model outperforms many previous baseline methods on an existing large dataset annotated with sarcasm.
DOI:
10.1609/aaai.v34i10.7226
AAAI
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved