Abstract:
Intent recognition is one of the most crucial tasks in NLU systems, which are nowadays especially important for designing intelligent conversation. We propose a novel approach to intent recognition which involves combining transformer architecture with capsule networks. Our results show that such architecture performs better than original capsule-NLU network implementations and achieves state-of-the-art results on datasets such as ATIS, AskUbuntu ,and WebApp.

Published Date: 2020-06-02
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved
DOI:
10.1609/aaai.v34i10.7215