Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
Track:
Student Abstract Track
Downloads:
Abstract:
Learning latent representations in graphs is finding a mapping that embeds nodes or edges as data points in a low-dimensional vector space. This paper introduces a flexible framework to enhance existing methodologies that have difficulty capturing local proximity and global relationships at the same time. Our approach generates a virtual edge between non-adjacent nodes based on the Forman-Ricci curvature in network. By analyzing the network using topological information, global relationships structurally similar can easily be detected and successfully integrated with previous works.
DOI:
10.1609/aaai.v34i10.7210
AAAI
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved