Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
Track:
Student Abstract Track
Downloads:
Abstract:
Real-time traffic monitoring is one of the most important factors for route planning and estimated time of arrival (ETA). Many major roads in large cities are installed with live traffic monitoring systems, inferring the current traffic congestion status and ETAs to other locations. However, there are also many other roads, especially small roads and paths, that are not monitored. Yet, live traffic status on such un-monitored small roads can play a non-negligible role in personalized route planning and re-routing when road incident happens. How to estimate the traffic status on such un-monitored roads is thus a valuable problem to be addressed. In this paper, we propose a model called Spatial Factorization Machines (SFM) to address this problem. A major advantage of the SFM model is that it incorporates physical distances and structures of road networks into the estimation of traffic status on un-monitored roads. Our experiments on real world traffic data demonstrate that the SFM model significantly outperforms other existing models on ETA of un-monitored roads.
DOI:
10.1609/aaai.v34i10.7200
AAAI
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved