Abstract:
Faster and more energy efficient hardware accelerators are critical for machine learning on very large datasets. The energy cost of performing vector-matrix multiplication and repeatedly moving neural network models in and out of memory motivates a search for alternative hardware and algorithms. We propose to use streaming batch principal component analysis (SBPCA) to compress batch data during training by using a rank-k approximation of the total batch update. This approach yields comparable training performance to minibatch gradient descent (MBGD) at the same batch size while reducing overall memory and compute requirements.

Published Date: 2020-06-02
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved
DOI:
10.1609/aaai.v34i10.7178