Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
Track:
Student Abstract Track
Downloads:
Abstract:
Graph convolutional networks (GCN) have been applied in knowledge base question answering (KBQA) task. However, the pairwise connection between nodes of GCN limits the representation capability of high-order data correlation. Furthermore, most previous work does not fully utilize the semantic relation information, which is vital to reasoning. In this paper, we propose a novel multi-hop KBQA model based on hypergraph convolutional network. By constructing a hypergraph, the form of pairwise connection between nodes and nodes is converted to the high-level connection between nodes and edges, which effectively encodes complex related data. To better exploit the semantic information of relations, we apply co-attention method to learn similarity between relation and query, and assign weights to different relations. Experimental results demonstrate the effectivity of the model.
DOI:
10.1609/aaai.v34i10.7172
AAAI
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved