DOI:
10.1609/aaai.v34i10.7170
Abstract:
Motivated by the mandate to design and deploy a practical, real-world educational tool for grading, we extensively explore linguistic patterns for Short Answer Scoring (SAS) as well as authorship feedback. We approach the SAS task via a multipronged approach that employs linguistic context features for capturing domain-specific knowledge while emphasizing on domain agnostic grading and detailed feedback via an ensemble of explainable statistical models. Our methodology quantitatively supersedes multiple automatic short answer scoring systems.