Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
Track:
Student Abstract Track
Downloads:
Abstract:
Automatic speech recognition(ASR) systems play a key role in many commercial products including voice assistants. Typically, they require large amounts of high quality speech data for training which gives an undue advantage to large organizations which have tons of private data. We investigated if speech data obtained from publicly available sources can be further enhanced to train better speech recognition models. We begin with noisy/contaminated speech data, apply speech enhancement to produce 'cleaned' version and use both the versions to train the ASR model. We have found that using speech enhancement gives 9.5% better word error rate than training on just the original noisy data and 9% better than training on just the ground truth 'clean' data. It's performance is also comparable to the ideal case scenario when trained on noisy and it's ground truth 'clean' version.
DOI:
10.1609/aaai.v34i10.7168
AAAI
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved