Abstract:
Drug use reporting is often a bottleneck for modern public health surveillance; social media data provides a real-time signal which allows for tracking and monitoring opioid overdoses. In this work we focus on text-based feature construction for the prediction task of opioid overdose rates at the county level. More specifically, using a Twitter dataset with over 3.4 billion tweets, we explore semantic features, such as topic features, to show that social media could be a good indicator for forecasting opioid overdose crude rates in public health monitoring systems. Specifically, combining topic and TF-IDF features in conjunction with demographic features can predict opioid overdose rates at the county level.

Published Date: 2020-06-02
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved
DOI:
10.1609/aaai.v34i10.7165