Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
Track:
Student Abstract Track
Downloads:
Abstract:
In today's digital world, rapid technological advancements continue to lessen the burden of tasks for individuals. Among these tasks is communication across perceived language barriers. Indeed, increased attention has been drawn to American Sign Language (ASL) recognition in recent years. Camera-based and motion detection-based methods have been researched extensively; however, there remains a divide in communication between ASL users and non-users. Therefore, this research team proposes the use of a novel wireless sensor (Frequency-Modulated Continuous-Wave Radar) to help bridge the gap in communication. In short, this device sends out signals that detect the user's body positioning in space. These signals then reflect off the body and back to the sensor, developing thousands of cloud points per second, indicating where the body is positioned in space. These cloud points can then be examined for movement over multiple consecutive time frames using a cell division algorithm, ultimately showing how the body moves through space as it completes a single gesture or sentence. At the end of the project, 95% accuracy was achieved in one-object prediction as well as 80% accuracy on cross-object prediction with 30% other objects' data introduced on 19 commonly used gestures. There are 30 samples for each gesture per person from three persons.
DOI:
10.1609/aaai.v34i10.7162
AAAI
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved