DOI:
10.1609/aaai.v34i10.7161
Abstract:
We propose a decentralized multi-agent deep reinforcement learning architecture to investigate pattern formation under the local information provided by the agents' sensors. It consists of tasking a large number of homogeneous agents to move to a set of specified goal locations, addressing both the assignment and trajectory planning sub-problems concurrently. We then show that agents trained on random patterns can organize themselves into very complex shapes.