Abstract:
We propose a decentralized multi-agent deep reinforcement learning architecture to investigate pattern formation under the local information provided by the agents' sensors. It consists of tasking a large number of homogeneous agents to move to a set of specified goal locations, addressing both the assignment and trajectory planning sub-problems concurrently. We then show that agents trained on random patterns can organize themselves into very complex shapes.

Published Date: 2020-06-02
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved
DOI:
10.1609/aaai.v34i10.7161