Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
Track:
Student Abstract Track
Downloads:
Abstract:
Sponsored search optimizes revenue and relevance, which is estimated by Revenue Per Mille (RPM). Existing sponsored search models are all based on traditional statistical models, which have poor RPM performance when queries follow a heavy-tailed distribution. Here, we propose an RPMoriented Query Rewriting Framework (RQRF) which outputs related bid keywords that can yield high RPM. RQRF embeds both queries and bid keywords to vectors in the same implicit space, converting the rewriting probability between each query and keyword to the distance between the two vectors. For label construction, we propose an RPM-oriented sample construction method, labeling keywords based on whether or not they can lead to high RPM. Extensive experiments are conducted to evaluate performance of RQRF. In a one month large-scale real-world traffic of e-commerce sponsored search system, the proposed model significantly outperforms traditional baseline.
DOI:
10.1609/aaai.v34i10.7156
AAAI
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved